Chem 1025
Prof George W.J. Kenney, Jr

Chapter 10: Energy

These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests!

To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

Energy is the ability to do work or produce heat
Potential energy is energy due to position - water above a waterfalls
Kinetic energy is energy due to motion

$$
\mathbf{E k}=1 / 2 \mathbf{m} \mathbf{v}^{2} \quad \mathrm{~m}=\text { mass }, \mathrm{v}=\text { velocity }
$$

Law of Conservation of energy: energy can be converted from one form to another, but cannot be created nor destroyed.

EXAMPLE of 2 balls going down a hill and up a slight incline
Work: Force acting over a distance.
State Function is a property of a system that changes independently of it's pathway.
EXAMPLE: Going up a hill directly or by going around the hill
Temperature is a measure of the random motion of the components of a substance
EXAMPLE: Two attached containers one with $90^{\circ} \mathrm{C}$ water and one with $10^{\circ} \mathrm{C}$ water.
Heat is the flow of energy due to a temperature difference.
$\Delta \mathbf{T}$ is the change in temperature. Above example $\Delta \mathrm{T}=90^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}=80^{\circ} \mathrm{C}$

Chemical Reactions

Exothermic: evolution of heat
In an exothermic reaction, some of the potential energy stored in chemical bonds is converted to thermal energy
Endothermic: absorbs energy

Thermodynamics

First Law of Thermo: The energy of the universe is constant
Internal Energy, E is the sum of the kinetic and potential energy of the system
The change in Internal Energy is $\quad \Delta \mathrm{E}=\mathrm{q}+\mathrm{w} \quad \mathrm{q}=$ heat, $\mathrm{w}=$ work
For an Exothermic evolution of heat reaction, q is NEGATIVE to indicate the systems energy is decreasing
For an Endothermic absorption of heat reaction, q is POSITIVE
q is measured in calories or joules. 1 calorie $=\mathbf{4 . 1 8 4}$ joules

$$
1 \mathrm{cal}=1 \mathrm{~J}
$$

DO SOME ENERGY CONVERSIONS

Another definition of a calorie is the amount of energy required to heat 1 g of water $1^{\circ} \mathrm{C}$
WORK SOME PROBLEMS FOR HEATING WATER
How much energy in joules is required to heat $100 . \mathrm{g}$ of water from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$?
Specific Heat Capacity is the amount of energy required to change the temperature of 1 gram of a substance $1^{\circ} \mathrm{C}$.

Substance	Specific Heat Capacity in $\mathrm{J} / \mathrm{g}^{\mathbf{0}} \mathbf{C}$ Water
A.184	
Aluminum	0.89
Iron	0.45
Mercury	0.14
Carbon	0.71
Silver	0.24
Gold	0.13

Example 10.3 How much energy is required to heat 1.3 g of iron from $25^{\circ} \mathrm{C}$ to $46^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \mathbf{Q}=\mathbf{s} * \mathbf{m} * \Delta \mathbf{t} \quad \mathrm{~s}=\text { Specific Heat, } \mathrm{m}=\text { mass, } \Delta \mathrm{t}=\text { change in temperature } \\
& \mathrm{Q}=0.45 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C} * 1.3 \mathrm{~g} *\left(46^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)=12.285 \mathrm{~J}=12 \mathrm{~J} \quad[\text { Note } 2 \text { SigFig }]
\end{aligned}
$$

Exercise 10.3 How much energy is required to heat 5.63 g of gold from $21^{\circ} \mathrm{C}$ to $32{ }^{\circ} \mathrm{C}$?
Example 10.4 A 1.6 g sample of a metal requires 5.8 J to change it's temperature from 23 to $41^{\circ} \mathrm{C}$. Is the metal gold?

Hint: Solve the above equation for "s"
Exercise 10.4 a 2.8 g of metal requires 10.1 J of energy to heat it from 21 to $36^{\circ} \mathrm{C}$. What is the metal?
Enthalpy: how much energy is produced or absorbed in a chemical reaction.
Enthalpy is H, but we measure the change in enthalpy $=\Delta \mathbf{H} \quad$ At $\mathbf{q}_{\mathbf{p}}=\Delta \mathbf{H}$
Example 10.51 mol of methane $\left(\mathrm{CH}_{4}\right)$ is burned at P_{K} and 890 kJ of energy is released. What is the $\Delta \mathrm{H}$?
$\Delta \mathrm{H}=$ Energy $/ \mathrm{m}=-890 \mathrm{~kJ} / 1 \mathrm{~mol}=-890 \mathrm{~kJ} / \mathrm{mol}$
How much energy is given off by burning 5.8 g of methane?
Exercise 10.5 How much energy is given off by reacting 1.00 g of Fe with excess oxygen

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3} \Delta \mathrm{H}=-1652 \mathrm{~kJ}
$$

Hess's Law: in going from a particular set of reactants to a particular set of products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.

DO EXAMPLE OF PROPANE

Quality of Energy

Heat Death: all of the energy of the universe is spread evenly throughout the universe and everything is at the same temperature. At this point it will not be possible to do work.

Energy and out World

Fossil fuels: Plants have stored energy via photosynthesis and then decay to become fossil fuels
Petroleum: a thick dark liquid composed mostly of hydrocarbons [C \& H containing compounds]
Natural Gas: a mixture mostly of methane [CH_{4}], with traces of ethane [$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$] and propane [$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$] and butane [$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$].

Gasoline $\quad \mathrm{C}_{5}-\mathrm{C}_{10}$ fractions
Kerosene $\quad \mathrm{C}_{10}-\mathrm{C}_{18}$ fractions
Diesel Fuel $\quad \mathrm{C}_{15}-\mathrm{C}_{25}$ fractions
Asphalt $\quad>\mathrm{C}_{25}$

Pyrolytic cracking: heating kerosene to $700^{\circ} \mathrm{C}$ go break it into smaller molecules
Engine Knocking is caused by uneven burning of gasoline vapours in the car engine. Adding Tetraethyl Lead $\left(\mathbf{C}_{2} \mathbf{H}_{5}\right)_{4} \mathbf{P b}$ would stop knocking. But Lead vapours started to build up in our atmosphere which was not a good thing!

Coal: a complex organic material with an empirical formula of $\mathrm{CH}_{2} \mathrm{O}$ and a molecular weight around 500,000 $\mathrm{g} / \mathrm{mole}$.

Coal Type	\% Carbon	\% Sulfur
Lignite	71	1
Subbituminous	77	1
Bituminous	80	$\underline{\mathbf{5}}$
Anthracite	92	1

The more carbon, the more energy you can get from burning coal

Greenhouse Effect

Sun $\quad \rightarrow$ Visible Radiation \rightarrow EARTH absorbs the light
Earth converts light to heat and radiates the heat out \rightarrow heat or Infra-Red Radiation
CO_{2} in the atmosphere absorbs the IR and eventually re-radiates it out
It radiates it half out to outer space and half back to earth.
The half reflected back to earth is called the Blanket Effect.

Where does CO_{2} come from?

Entropy

Second law of Thermodynamics: The entropy of the universe is always increasing
Entropy is also known as the randomness of something
Burning of a wood \log to generate $\mathrm{CO} 2, \mathrm{H} 2 \mathrm{O}$, ashes and energy
$\log \left[\right.$ Carbon] $+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+$ ashes and energy
You never see carbon dioxide water and ashes and energy forming a log, do you?
Put two flasks together, one filled with a gas one with a vacuum. Open the valve between the flasks, the gas will now fill both flasks. Have you ever seen the reaction to go the other way?

Chem 1025 Ch 10
Page 3 of 4
8-Nov-09 1:10 PM

Energy Spread: Light a Bunsen burner. Methane burns to form $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+$ energy The energy, or heat and light spreads out. Have you ever seen it go the other way?

These all describe Entropy. Entropy (S) is a measure of disorder or randomness, as these increase, S increases.

